Nuclei of normal rational curves

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclei of Normal Rational Curves

A k–nucleus of a normal rational curve in PG(n, F ) is the intersection over all k–dimensional osculating subspaces of the curve (k ∈ {−1, 0, . . . , n− 1}). It is well known that for characteristic zero all nuclei are empty. In case of characteristic p > 0 and #F ≥ n the number of non–zero digits in the representation of n+ 1 in base p equals the number of distinct nuclei. An explicit formula ...

متن کامل

Completeness of Normal Rational Curves

The completeness of normal rational curves, considered as (q + 1)-arcs in PG(n, q), is investigated. Previous results of Storme and Thas are improved by using a result by Kovacs. This solves the problem completely for large prime numbers q and odd nonsquare prime powers q = p2h+l with p prime, p > po(h), h>\,1where po(h) is an odd prime number which depends on h.

متن کامل

Dynamical systems for rational normal curves

We construct dynamical systems with Pn as state space, using (n+1)×(n+1) matrices of linear forms in n+1 variables, such that the fixed point sets are rational normal curves minus one point. Our matrices provide canonical forms for the triple action of PGLn+1 on the projective space of such matrices. Our dynamical systems include parameters identified with points in Pn−1. We find conditions on ...

متن کامل

On the Normal Bundles of Smooth Rational Space Curves

in this note we consider smooth rational curves C of degree n in threedimensional projective space IP 3 (over a closed field of characteristic 0). To avoid trivial exceptions we shall always assume that n ~ 4 (this does not hold however for certain auxiliary curves we shall consider). Let N = N c be the normal bundle of C in IP 3. Since degel(IP3)=4, and d e g c l ( l P 0 = 2 , we have that d e...

متن کامل

Pascal's Triangle, Normal Rational Curves, and their Invariant Subspaces

Each normal rational curve Γ in PG(n, F ) admits a group PΓL(Γ) of automorphic collineations. It is well known that for characteristic zero only the empty and the entire subspace are PΓL(Γ)–invariant. In case of characteristic p > 0 there may be further invariant subspaces. For #F ≥ n+ 2, we give a construction of all PΓL(Γ)–invariant subspaces. It turns out that the corresponding lattice is to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry

سال: 2000

ISSN: 0047-2468,1420-8997

DOI: 10.1007/bf01237480